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Mohammad H. Zhoolideh Haghighi∗

Department of Physics, K.N. Toosi University of Technology, Tehran P.O. Box 15875-4416, Iran,

School of Astronomy, Institute for Research in Fundamental Sciences (IPM), Tehran, 19395-5746, Iran,

Abstract

Classification is a popular task in the field of Machine Learning (ML) and Artificial In-
telligence (AI), and it happens when outputs are categorical variables. There are a wide
variety of models that attempts to draw some conclusions from observed values, so classifica-
tion algorithms predict categorical class labels and uses it in classifying new data. Popular
classification models including logistic regression, decision tree, random forest, Support Vec-
tor Machine (SVM), multilayer perceptron, naive bayes, neural networks have proven to be
efficient and accurate applied on many industrial and scientific problems. Particularly, appli-
cation of ML to astronomy has shown to be very useful for classification, clustering and data
cleaning. It is because after learning computers, these tasks can be done automatically by
them in a more precise and more rapid way than human operators. In view of this, in this
paper, we will review some of these popular classification algorithms, and then we apply some
of them to the observational data of nonvariable and the RR Lyrae variable stars that come
from the SDSS survey. For the sake of comparison, we calculate the accuracy and F1-score of
the applied models.

Key words: Machine learning, Classification, Sloan Digital Sky Survey, Nonvariable stars, RR
Lyrae variables.

1 Introduction

Machine learning is a branch of artificial intelligence (AI) and computer science which focuses on
the use of data and algorithms to imitate the way that humans learn. One of the most popular
branches of ML is Supervised Learning (Jain, 1999). It is a machine learning approach defined by
its use of labeled datasets to train algorithms to classify data and predict outcomes. The labeled
dataset, which is called training set, has output labeled corresponding to input data. The machine
is supposed to understand what to search for, in the unseen data and provide some predictions based
on what it has already learned from the labeled data. There are two main areas where supervised
machine learning comes in handy, classification problems and regression problems. Classification
refers to taking an input value and mapping it to a discrete value. In classification problems, our
output typically consists of classes or categories, but regression is related to continuous data and
in that the predicted output values are real numbers (Dutton and Conroy, 1996).

As astronomy is experiencing a rapid growth in the size and complexity of data, these changes
foster the development of data-driven science as a useful companion to the common model-driven
data analysis paradigm, where astronomers develop automatic tools to mine datasets and extract
novel information from them. In recent years, machine learning algorithms have become increas-
ingly popular among astronomers, and ML is now used for a wide variety of tasks. Machine learning
algorithms can be used in the field of astronomy and cosmology for astronomical object detection
and object classification (Richards et al., 2004), clustering (Campana et al., 2007), anomaly detec-
tion (Nun et al., 2014), feature extraction (Sen et al., 2022) and other related domains.
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2 Review; Popular Classification Algorithms

2.1 Linear regression

Simple linear regression is a type of regression analysis where there is one independent variable (x)
with a linear relationship with another dependent variable (y). Based on the given data points,
the algorithm try to find a line that models the points in the best possible way. The line can be
modeled based on a linear equation (Efron & Tibshirani, 1991)

y = a ∗ x+ b (1)

The motivation of the linear regression algorithm is to find the best values for a and b. The
cost function helps us to figure out the best possible values for a and b which would provide the
best fit line for the data points. Since the best values for a and b are desired, we convert this
search problem into a minimization problem where we would like to minimize the error between
the predicted value and the actual value.

Minimize
1

n

n
∑

i=1

(ypred − yi)
2

(2)

J =
1

n

n
∑

i=1

(ypred − yi)
2

(3)

We choose the above function for minimization. The difference between the predicted values and
ground truth measures the error difference. We square the error difference and sum over all data
points and divide that value by the total number of data points. This provides the average squared
error over all the data points. Now, using this cost function we can change the values of a and b

such that the cost function value settles at the minima. To minimize the cost function, one can
use gradient descent which is a method of updating a and b to reduce the cost function. The idea
is that we start with some values for a and b and then we change these values iteratively to reduce
the cost. Gradient descent helps us on how to change the values. To update a and b, we take
gradients from the cost function. To find these gradients, we take partial derivatives with respect
to a and b as follows:

J =
1

n

n
∑
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(ypred − yi)
2

J =
1

n

n
∑
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2
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∂a
=

2
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n
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∂a
=

2
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(ypred − yi)
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∂b
=

2

n

n
∑

i=1

(a+ b · xi − yi) · xi =⇒
∂J

∂b
=

2

n

n
∑

i=1

(ypred − yi) · xi

(4)

a = a− α ·
2

n

n
∑

i=1

(ypred − yi)

b = b− α ·
2

n

n
∑

i=1

(ypred − yi) · xi

(5)

The partial derivates are the gradients and they are used to update the values of a and b. α is
the learning rate which is a hyper-parameter that must be specified. A smaller learning rate could
help to be closer to the minima but takes more time to reach the minima, a larger learning rate
converges sooner but there is a chance that one could overshoot the minima.
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2.2 Logistic regression

Logistic regression is another powerful supervised ML algorithm used for binary classification
problems (when target is categorical). The best way to think about logistic regression is that it
is a linear regression but for classification problems. Logistic regression essentially uses a logistic
function defined below to model a binary output variable (Sur & Candès, 2019). The primary
difference between linear regression and logistic regression is that logistic regression’s range is
bounded between 0 and 1. In addition, as opposed to linear regression, logistic regression does
not require a linear relationship between inputs and output variables. In this approach, instead of
defining cost function based on y, the sigmoid of y is used.

Output = 0 or 1

y = a ∗ x+ b

hΘ(x) = sigmoid(y)

sigmoid(y) = 1
1+e−y

(6)

Cost(h⊖ (x), y( actual )) =− log(h⊖ (x)) if y = 1

− log(1− h⊖ (x)) if y = 0
(7)

By having the cost function of logistic regression as defined in equation (7), one can easily find a

and b via minimizing this cost function; as a result y will be determined.

2.3 Naive Bayesian (NB)

Using Bayes theorem, we can find the probability of A, happening, given that B has occurred. Here,
B is the evidence and A is the hypothesis. The assumption made here is that the predictors/features
are independent. Bayes theorem can be rewritten as:

P (y | X) =
P (X | y)P (y)

P (X)
(8)

Where X is the feature vector and by substituting for X and expanding using the chain rule we
get,

P (y | x1, . . . , xn) =
P (x1 | y)P (x2 | y) . . . P (xn | y)P (y)

P (x1)P (x2) . . . P (xn)
(9)

Now, you can obtain the values for each by looking at the dataset and substitute them into
the equation. For all entries in the dataset, the denominator does not change, it remain static.
Therefore, the denominator can be removed and a proportionality can be introduced.

P (y | x1, ..., xn) ∝ P (y) Πn
i P (xi | y) (10)

One popular type of Naive Bayes Classifier is Gaussian Naive Bayes. When the predictors take
up a continuous value and are not discrete, we assume that these values are sampled from a
gaussian distribution. Since the way the values are present in the dataset changes, the formula for
conditional probability changes to,

P (xi | y) =
1

√

2πσ2
y

exp

(

−
(xi − µy)

2

2σ2
y

)

(11)

In our case, the class variable(y) has only two outcomes, yes or no. There could be cases where
the classification could be multivariate. Therefore, we need to find the class y with maximum
probability.
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y = argmaxP (y) Πn
i P (xi | y) (12)

Naive Bayes algorithms are mostly used in sentiment analysis, spam filtering, recommendation
systems etc. They are fast and easy to implement but their biggest disadvantage is that the
requirement of predictors to be independent (du Buisson et al., 2015). In most of the real cases,
the predictors are dependent, this hinders the performance of the classifier.

2.4 Support Vector Machines (SVMs)

Support vector machine is highly preferred by many as it produces significant accuracy with less
computation power. Support Vector Machine, abbreviated as SVM can be used for both regression
and classification tasks. But, it is widely used in classification objectives. The objective of the
support vector machine algorithm is to find a hyperplane in an N-dimensional space(N — the
number of features) that distinctly classifies the data points (Vapnik, 1995). To separate the two
classes of data points, there are many possible hyperplanes that could be chosen. Our objective
is to find a plane that has the maximum margin, i.e the maximum distance between data points
of both classes. Maximizing the margin distance provides some reinforcement so that future data
points can be classified with more confidence. Hyperplanes are decision boundaries that help
classify the data points. Data points falling on either side of the hyperplane can be attributed to
different classes. Also, the dimension of the hyperplane depends upon the number of features. In
logistic regression, we take the output of the linear function and squash the value within the range
of [0,1] using the sigmoid function. If the squashed value is greater than a threshold value(0.5) we
assign it a label 1, else we assign it a label 0. In SVM, we take the output of the linear function
and if that output is greater than 1, we identify it with one class and if the output is -1, we identify
is with another class. Since the threshold values are changed to 1 and -1 in SVM, we obtain this
reinforcement range of values([-1,1]) which acts as margin.

In the SVM algorithm, we are looking to maximize the margin between the data points and
the hyperplane. The loss function that helps maximize the margin is Hinge loss. The cost is 0 if
the predicted value and the actual value are of the same sign. If they are not, we then calculate

the loss value. c(x, y, f(x)) =

{

0, if y ∗ f(x) ≥ 1
1− y ∗ f(x), else

We also add a regularization parameter the cost function. The objective of the regulariza-
tion parameter is to balance the margin maximization and loss. After adding the regularization
parameter, the cost functions looks as below.

min
w

[λ‖w‖2 +

n
∑

i=1

(1− yi 〈xi, w〉)+] (13)

By taking partial derivatives with respect to the weights to find the gradients. Using the
gradients, we can update our weights.

δ

δwk

λ‖w‖2 = 2λwk (14)

δ

δwk

(1− yi 〈xi, w〉)+ =

{

0, if yi 〈xi, w〉 ≥ 1

−yixik, else
(15)

When there is no misclassification, i.e our model correctly predicts the class of our data point, we
only have to update the gradient from the regularization parameter.

w = w − α · (2λw) (16)

When there is a misclassification, i.e our model make a mistake on the prediction of the class of
our data point, we include the loss along with the regularization parameter to perform gradient
update.

w = w + α · (yi · xi − 2λw) (17)
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2.5 K-means

K-means is an unsupervised classification algorithm, also called clusterization, that groups objects
into k groups based on their characteristics. The grouping is done by minimizing the sum of the
distances between each object and the group or cluster centroid (MacQueen, 1967). The distance
that is usually used is the quadratic or euclidean distance. The algorithm has three steps: 1)
Initialization: once the number of groups, k has been chosen, k centroids are established in the
data space, for instance, choosing them randomly, 2) Assignment of objects to the centroids: each
object of the data is assigned to its nearest centroid, 3) Centroids update: The position of the
centroid of each group is updated taking as the new centroid the average position of the objects
belonging to said group. Steps 2 and 3 should be repeated until the centroids do not move, or move
below a threshold distance in each step. The k-means algorithm solves an optimization problem
and the function to be optimized (minimized) is the sum of the quadratic distances from each object
to its cluster centroid. The objects are represented with d dimension vectors (x1,x2, . . . ,xn) and
the algorithm k-means builds k groups where the sum of the distances of the objects to its centroid
is minimized within each group S = {S1, S2, . . . , Sk}. The problem can be formulated as:

min
S

E (µi) = min
S

k
∑

i=1

∑

xj∈Si

‖xj − µi‖
2

(18)

where S is the dataset whose elements are the objects xj represented by vectors, where each of
its elements represents a characteristic or attribute. We will have k groups or clusters with their
corresponding centroid µi. In each centroid update, from the mathematical point of view, we
impose the extreme (minimum, in this case) necessary condition to the function E (µi) that, for
this quadratic function (1) is

∂E

∂µi

= 0 =⇒ µ
(t+1)
i =

1
∣

∣

∣
S
(t)
i

∣

∣

∣

∑

xj∈S
(t)
i

xj (19)

and the solution is to take each group element average as a new centroid. We have used the gradient
descent method. The main advantages of the k-means method are that it is simple and fast. But
it is necessary to decide the value of k and the final result depends on the initialization of the
centroids. Also, it does not necessarily converge to the global minimum but to a local minimum.

2.6 Decision Trees

Decision Trees are trees that classify objects by sorting them based on feature values. Each node
in a decision tree represents a feature in an instance to be classified, and each branch represents a
value that the node can assume. Objects are classified starting at the root node and sorted based
on their feature values. As the name goes, it uses a tree-like model of decisions. In the first split or
the root, all attributes/features are considered and the training data is divided into groups based
on this split (Murthy, 1998). Suppose we have three features, so we will have three candidate
splits. So one can calculate how much accuracy each split will cost, using a function. The split
that costs least is chosen. When there is a large set of features, it results in large number of split,
which in turn gives a huge tree. Such trees are complex and can lead to overfitting. So, we need
to know when to stop. One way of doing this is to set maximum depth of your model. Maximum
depth refers to the the length of the longest path from a root to a leaf.

Decision Trees are a type of Supervised Machine Learning (that is you explain what the input
is and what the corresponding output is in the training data) where the data is continuously split
according to a certain parameter. The tree can be explained by two entities, namely decision nodes
and leaves. The leaves are the decisions or the final outcomes. And the decision nodes are where
the data is split. There are many algorithms out there which construct Decision Trees, but one of
the best is called as ID3 Algorithm. ID3 Stands for Iterative Dichotomiser 3. Before discussing
the ID3 algorithm, we’ll go through few definitions.
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Entropy, also called as Shannon Entropy is denoted by H(S) for a finite set S, is the measure
of the amount of uncertainty or randomness in data.

H(S) =
∑

x∈X

p(x) log2
1

p(x)
(20)

Decision Trees modified Intuitively, it tells us about the predictability of a certain event. Ex-
ample, consider a coin toss whose probability of heads is 0.5 and probability of tails is 0.5. Here
the entropy is the highest possible, since there’s no way of determining what the outcome might
be. Alternatively, consider a coin which has heads on both the sides, the entropy of such an event
can be predicted perfectly since we know beforehand that it’ll always be heads. In other words,
this event has no randomness hence it’s entropy is zero. In particular, lower values imply less
uncertainty while higher values imply high uncertainty.

Information gain is also called as Kullback-Leibler divergence denoted by IG(S,A) for a set
S is the effective change in entropy after deciding on a particular attribute A. It measures the
relative change in entropy with respect to the independent variables IG(S,A) = H(S)−H(S,A).
Alternatively,

IG(S,A) = H(S)−
n
∑

i=0

P (x) ∗H(x) (21)

Where IG(S,A) is the information gain by applying feature A. H(S) is the Entropy of the entire
set, while the second term calculates the Entropy after applying the feature A, where P (x) is the
probability of event x.

ID3 Algorithm will perform following tasks recursively. a) Create root node for the tree , b) If
all examples are positive, return leaf node ‘positive’ , c) Else if all examples are negative, return leaf
node ‘negative’ , d) Calculate the entropy of current state H(S) , e) For each attribute, calculate
the entropy with respect to the attribute ‘x’ denoted by H(S, x) , g) Select the attribute which
has maximum value of IG(S, x) , h) Remove the attribute that offers highest IG from the set of
attributes , i) Repeat until we run out of all attributes, or the decision tree has all leaf nodes.

2.7 Neural Networks

Neural networks are multi-layer networks of neurons that are used to classify things and make
predictions. A neural network is made up of densely connected processing nodes (Rumelhart et al.,
1986), similar to neurons in the brain. Each node may be connected to different nodes in multiple
layers above and below it. These nodes move data through the network in a feed-forward fashion,
meaning the data moves in only one direction. The node “fires” like a neuron when it passes
information to the next node. A simple neural network has an input layer, output layer and one
hidden layer between them. A network with more than three layers, including the input and output,
is known as a deep learning network. In a deep learning network, each layer of nodes trains on data
based on the output from the previous layer. Having more layers leads to, the greater the ability
to recognize more complex information, based on data from the previous layers. The network
makes decisions by assigning each connected node to a number known as a “weight.” The weight
represents the value of information assigned to an individual node (i.e., how helpful it is in correctly
classifying information). When a node receives information from other nodes, it calculates the total
weight or value of the information. If the number exceeds a certain threshold, the information is
passed onto the next layer. If the weight is below the threshold, the information is not passed
on. In a newly formed neural network, all weights and thresholds are set to random numbers. As
training data is fed into the input layer, the weights and thresholds refine to consistently yield
correct outputs. In Figure (1), one can see the different parts of a Neural Network.

3 Data

Here we are going to introduce a real sample of astronomical data. RR Lyrae variables are periodic
variable stars, commonly found in globular clusters (Ivezic et al., 2005). They are used as standard
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Figure 1: A schematic view of a Neural Network. As can be seen, there are three main parts, input
layer, hidden layers, and output layers.

candles to measure galactic distances, assisting with the cosmic distance ladder. They are pulsating
horizontal branch stars of spectral class A or F, with a mass of around half the Sun’s. They are
thought to have shed mass during the red-giant branch phase and were once stars of similar or
slightly less mass than the Sun, around 0.8 solar masses. In contemporary astronomy, a period-
luminosity relation makes them good standard candles for relatively nearby targets, especially
within the Milky Way and Local Group. They are also frequent subjects in the studies of globular
clusters. We use the set of photometric observations of RR Lyrae stars in the SDSS as our data.
The data set comes from SDSS Stripe 82, and combines the Stripe 82 standard stars, which
represent observations of non-variable stars; and the RR Lyrae variables pulled from the same
observations as the standard stars, and selected based on their variability using supplemental data.
The sample is further constrained to a smaller region of the overall color–color space following
0.7 < u − g < 1.35,−0.15 < g − r < 0.4,−0.15 < r − i < 0.22, and − 0.21 < i − z < 0.25
(Ivezic et al., 2005). These selection criteria lead to a sample of 92,658 non-variable stars, and
483 RR Lyraes. Two features of this combined data set make it a good candidate for testing
classification algorithms:

4 Classification metrics

When performing classification predictions, there are four types of outcomes that could occur.
True positives, which are when you predict an observation belongs to a class and it actually does
belong to that class. True negatives, which are when you predict an observation does not belong to
a class and it actually does not belong to that class. False positives, which occur when you predict
an observation belongs to a class when in reality it does not. False negatives, which occur when
you predict an observation does not belong to a class when in fact it does. These four outcomes
are often plotted on a confusion matrix. This matrix can be generated after making predictions on
the test data and then identifying each prediction as one of the four possible outcomes described
above.

The four main metrics used to evaluate a classification model are accuracy, precision, recall,
and F1 score.

7



Classifier Accuracy F1

Logistic regression 0.969 0.628

Naive Bayesian 0.983 0.654

SVMs 0.994 0.499

Decision Trees 0.994 0.703

Neural Networks 0.993 0.512

Table 1: Accuracy and F1 score for six chosen classifier. Although all models provide a very good
accuracy, F1 differs between proposed models and it is a better metric for evaluation of the models.

Accuracy is defined as the percentage of correct predictions for the test data. It can be calcu-
lated easily by dividing the number of correct predictions by the number of total predictions.

accuracy =
correct predictions

all predictions
(22)

Precision is defined as the fraction of relevant examples (true positives) among all of the exam-
ples which were predicted to belong in a certain class.

precision =
true positives

true positives+false positives
(23)

Recall is defined as the fraction of examples which were predicted to belong to a class with
respect to all of the examples that truly belong in the class.

recall =
true positives

true positives+false negatives
(24)

The F1-score combines the precision and recall of a classifier into a single metric by taking their
harmonic mean. It is primarily used to compare the performance of two classifiers. Suppose that
classifier A has a higher recall, and classifier B has higher precision. In this case, the F1-scores for
both the classifiers can be used to determine which one produces better results.

F1 =
2 precision * recall

precision + recall
(25)

5 Results

In this section, we apply a collection of popular classifier on our data set to train a set of machine
learning models and compare the different models with each other. In Figures (2, 3), we have
plotted our sample data and the classification boundary for a Logistic Regression and a Gaussian
naive Bayes classifier. In table (1) the accuracy and F1-score for different models are reported
which can be used to compare the proposed models.

6 Summary and Conclusion

We reviewed some of the popular classification algorithms including Linear Regression, Logistic
Regression, Naive Bayesian, SVM, Decision Trees and Neural Networks. Then we applied some of
the proposed models on a dataset of variable and nonvariable stars, extracted from SDSS survey
Stripe 82. After training the models on the proposed dataset, we tested the models and evaluated
their predictions. We used accuracy and F1-score as our indicators, which are reported in Table
(1) of the paper. As can be seen, the decision tree algorithm result in the best accuracy and
F1-score. In addition, for the sake of better understanding, we have plotted the decision boundary
of a logistic regression model and a Naive Bayes model in Figures (2, 3)

8



0.7 0.8 0.9 1.0 1.1 1.2 1.3

u− g

−0.1

0.0

0.1

0.2

0.3

0.4
g
−
r

Nonvariable
Variable

Figure 2: Logistic Regression classification method is used to separate variable stars from nonvari-
able stars. The light blue points show nonvariable sources, while the violet show variable sources.
The classification boundary is shown by the black line. Logistic Regression attains an accuracy of
0.969 and a F1-score of 0.628.
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